24 research outputs found

    A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

    Get PDF
    We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the Subtree Prune-and-Regraft (SPR) distance between two phylogenetic trees. Our result improves on the very recent 2.5-approximation algorithm due to Shi, Feng, You and Wang (2015). Our algorithm is the first approximation algorithm for this problem that uses LP duality in its analysis

    A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

    Get PDF
    We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the approximation guarantee, we construct a feasible dual solution for a novel linear programming formulation. In addition, we show this linear program is stronger than previously known formulations, and we give a compact formulation, showing that it can be solved in polynomial tim

    Split Scheduling with Uniform Setup Times

    Full text link
    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup a machine cannot process or set up any other job. We concentrate on the basic case in which setup times are job-, machine-, and sequence-independent. Problems of this kind were encountered when modelling practical problems in planning disaster relief operations. Our main algorithmic result is a polynomial-time algorithm for minimising total completion time on two parallel identical machines. We argue why the same problem with three machines is not an easy extension of the two-machine case, leaving the complexity of this case as a tantalising open problem. We give a constant-factor approximation algorithm for the general case with any number of machines and a polynomial-time approximation scheme for a fixed number of machines. For the version with objective minimising weighted total completion time we prove NP-hardness. Finally, we conclude with an overview of the state of the art for other split scheduling problems with job-, machine-, and sequence-independent setup times

    The traveling salesman problem on cubic and subcubic graphs

    Get PDF
    We study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal value of a TSP instance and that of its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on TeX vertices a tour of length TeX exists, which also implies the 4/3-conjecture, as an upper bound, for this class of graph-TSP. Recently, Mömke and Svensson presented an algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3-conjecture for this class of graph-TSP. The algorithm by Mömke and Svensson is initially randomized but the authors remark that derandomization is trivial. We will present a different way to derandomize their algorithm which leads to a faster running time. All of the latter also works for multigraphs

    A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

    Get PDF
    We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the approximation guarantee, we construct a feasible dual solution for a novel linear programming formulation. In addition, we show this linear program is stronger than previously known formulations, and we give a compact formulation, showing that it can be solved in polynomial tim

    The Orienteering Problem under Uncertainty Stochastic Programming and Robust Optimization compared

    Get PDF
    The Orienteering Problem (OP) is a generalization of the well-known traveling salesman problem and has many interesting applications in logistics, tourism and defense. To reflect real-life situations, we focus on an uncertain variant of the OP. Two main approaches that deal with optimization under uncertainty are stochastic programming and robust optimization. We will explore the potentialities and bottlenecks of these two approaches applied to the uncertain OP. We will compare the known robust approach for the uncertain OP (the robust orienteering problem) to the new stochastic programming counterpart (the two-stage orienteering problem). The application of both approaches will be explored in terms of their suitability in practice

    Split scheduling with uniform setup times

    Get PDF
    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or set up any other job. We concentrate on the basic case in which setup times are job-, machine- and sequence-independent. Problems of this kind were encountered when modelling practical problems in planning dis- aster relief operations. Our main algorithmic result is a polynomial-time algorithm for minimising total completion time on two parallel identical machines. We argue, why the same problem with threemachines is not an easy extension of the two-machine case, leaving the complexity of this case as a tantalising open problem. We give a constant-factor approximation algorithm for the general case with any number of machines and a polynomial-time approximation scheme for a fixed number of machines. For the version with the objective to minimise total weighted completion time, we prove NP-hardness. Finally, we conclude with an overview of the state of the art for other split scheduling problems with job-, machine- and sequence-independent setup times

    Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems

    Get PDF
    International audienceSystems in many safety-critical application domains are subject to certification requirements. For any given system, however, it may be the case that only a subset of its functionality is safety-critical and hence subject to certification; the rest of the functionality is non-safety-critical and does not need to be certified, or is certified to lower levels of assurance. The certification-cognizant runtime scheduling of such mixed-criticality systems is considered. An algorithm called EDF-VD (for Earliest Deadline First with Virtual Deadlines) is presented: this algorithm can schedule systems for which any number of criticality levels are defined. Efficient implementations of EDF-VD, as well as associated schedulability tests for determining whether a task system can be correctly scheduled using EDF-VD, are presented. For up to 13 criticality levels, analyses of EDF-VD, based on metrics such as processor speedup factor and utilization bounds, are derived, and conditions under which EDF-VD is optimal with respect to these metrics are identified. Finally, two extensions of EDF-VD are discussed that enhance its applicability. The extensions are aimed at scheduling a wider range of task sets, while preserving the favorable worst-case resource usage guarantees of the basic algorithm
    corecore